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ABSTRACT A pyramidical multi-scale encoder-decoder network, namely PMED-Net, is proposed for med-
ical image segmentation. Different variants of encoder-decoder networks are in practice for segmenting the
medical images and U-Net is the most widely used one. However, the existing architectures for segmenting
medical images have millions of parameters that require enormous computations which results in memory
and cost-inefficiency. To overcome such limitations, we come up with the idea of training small networks in
a cascaded form for coarse-to-fine prediction. The proposed adaptive network is extended up to six pyramid
levels, and at each level, features are extracted at different scales of the input image. Each lightweight
encoder-decoder network is trained independently to minimize loss, where succeeding level networks
further refine the prior predictions. Evaluation and comparison of our architecture were performed on four
different publicly available medical image segmentation datasets: International Skin Imaging Collaboration
(ISIC) challenge 2018 dataset, brain tumor dataset, nuclei dataset, and X-ray dataset. The experimental
results of the PMED-Net are either better or on par with other state-of-the-art networks in terms of IoU,
F1-Score, and sensitivity metrics. Moreover, PMED-Net is efficient in terms of parameterized complexity
as it has 1/21.3, 1/21.1, 1/14.0, 1/11.6, 1/11.2, 1/6.64, and 1/4.95 times fewer parameters than SegNet,
U-Net, BCDU-Net, CU-Net, FCN-8s, ORED-Net, and MultiResUNet respectively. The pre-trained models,
datasets information, and implementation details are available at https.://github.com/kabbas570/Pyramid-
Based-Encoder-Decoder.

INDEX TERMS Convolutional neural networks, encoder-decoder architecture, medical image processing,
semantic segmentation.

I. INTRODUCTION

Medical image processing is one of the core areas that
is investigated using deep learning [1]. With the advent
of Artificial Neural Networks (ANNSs), deep learning is
providing state-of-the-art performance for Computer-Aided
Diagnosis (CAD) systems [2]-[4] due to its robustness and
generalizability. The goal of medical image analysis is to
provide doctors with a precise interpretation of medical
images, as this is important for diagnosing any disease in
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the early stages. Manual analysis of medical images is a
cumbersome and tedious task, so there is a dire need for
developing computer algorithms to automate the diagnosis
process [5]. In medical image processing, researchers need to
solve various problems such as classification [6], tracking [7],
detection [8], and segmentation [9] to analyze the pathologies
of a disease within the candidate medical images.

After the emergence of AlexNet [10], convolutional neural
networks (CNNs) have emerged as a standard for solv-
ing these problems. In CNNs, the aim is to train algo-
rithms to visualize and recognize patterns in images with
minimum human intervention. This capability of CNNs
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has resulted in their application to all fields of computer
vision, from self-driving cars [11] to facial recognition [12],
bioinformatics [13], [14], stereo vision [15], 3D scene
reconstruction [16], and healthcare [17] with no exception.
In medical image processing, different imaging technologies
like magnetic resonance imaging (MRI), microscopy ultra-
sound, dermoscopy, X-ray, and computer tomography (CT)
are used to capture images of the human body [18]. The
goal of CAD system is to analyze these images, and produce
accurate and quick diagnostic reports for medical specialists
so that patients can receive immediate and effective treatment.

During recent few years, deep neural networks (DNN5s)
have replaced all classical and hand-engineered features
based recognition and segmentation methods [19]. How-
ever, supervised deep learning-based models are data-hungry
that require an extensive amount of training data (with
well-defined ground truths) [20]. Procuring large-amounts of
training data is often impractical and infeasible (especially for
the rarely occurring diseases) [21]. Furthermore, obtaining
medical data faces challenges related to logistics approvals
regarding patient privacy, storage problem, getting data from
proprietary ancestral raw files, and ground truth genera-
tion. Data augmentation strategies can provide an alternative
approach to meet this data requirement. However, it results
in a compromised training performance due to presence of
similar textures, shapes, and correlated features [22].

Image segmentation refers to the process of identifying
images at pixel level [23]. For medical images, segmentation
is very crucial in many applications for extracting the region
of interest (ROI). It can divide an image into different ROIs
to give a clear interpretation of a diseased organ, tissues,
or cells [24]. For illustration, Figure 1 shows examples of four
publicly available medical image segmentation datasets used
for the experiments conducted in this paper.

-

(a) (b) © (@)

FIGURE 1. Medical image segmentation: the first row is the inputs and
the second is the ground truths for (a) ISIC, (b) Brain tumor, (c) Nuclei,
and (d) X-ray datasets, respectively.

In this study, we propose a small and efficient pyra-
mid based multi-scale encoder-decoder network called
PMED-Net for medical image segmentation. The main con-
tributions of this work can be summarized as follows.

o An architecture that employs small pyramid based

encoder-decoder networks in a cascaded fashion is
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proposed for extracting complex lesions and biomarkers
contained within medical images by leveraging their
multi-scale feature representations.

o We address the adaptive techniques of network size to
achieve an optimal trade-off between performance and
computations.

« Features of different scales are extracted with the use of
pyramid-based encoder decoder networks.

o In terms of model parameters, the proposed architec-
ture is 95.30% smaller than SegNet [25], 95.27% than
U-Net [26], 92.90% than BCDU-Net [27], 91.42% than
CU-Net [28],91.11% smaller than FCN-8s [29], 84.94%
than ORED-Net [30], and 79.81% smaller than MultiRe-
sUNet [31].

Il. RELATED WORK
Medical image segmentation had been investigated even
before the advent of deep learning. The graph-cut
method [32], thresholding based on histograms [33], and
edge-region based techniques [34] were one of the popular
schemes. To extract coherent regions, clustering algorithms
were implemented [35], and for some cases in which images
had an irregular pattern and boundaries, the fuzzy c-means
algorithm (FCM) was introduced [36]. However, these clus-
tered based methods were limited in their application due
to their dependence on prior information about the number
of clusters. A region growing based method was proposed
in [37], which grouped the pixels with the same intensities in
one region. However, the method is semi-automated, requir-
ing human supervision for selecting the initial seed region.
In deep learning, most of the networks used for segmen-
tation are encoder-decoder based topology [38]. All these
networks follow the same strategy of increasing the depth and
decreasing the spatial dimension of the feature maps in the
encoder, while in the decoder, their mission is vice versa [39].
Fully convolutional network (FCN) [29], on the other hand,
was the first model to extend the power of contemporary
classification networks such as AlexNet [10], VGG [40],
and GoogleNet [41], for segmentation task and performed
much better than patch-based methods [42]. Furthermore,
FCN offers variable stride rates to generate coarser-to-finer
predictions (FCN-8s, FCN-16s, and FCN-32s). The encoder
part is same for all FCN versions while the decoder differs
in terms of the up-sampling stride. In FCN-8s and FCN-
16s the predictions are added with previously pooled layers
to make finer final predictions. SegNet is another popular
encoder-decoder based architecture and it is widely used for
semantic-segmentation [25]. The decoding part up-samples
low-resolution feature maps using the pooling indices from
the encoder to create sparse feature maps. One of the most
famous networks for the segmentation of medical images is
U-Net [26]. The network is similar to an encoder-decoder
architecture, with skip connections from encoder to decoder
side. In the encoder part, after two consecutive convolu-
tions, a 2 x 2 max-pooling is performed to reduce the
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TABLE 1. Comparison of the proposed architecture with other segmentation methods.

Weaknesses

Methods Strengths

FCN-8s [29] No fully connected layer, can be used for the
input images of any size.

SegNet [25] The use of max-poling indices from encoder
to decoder part significantly improves the
segmentation performance.

U-Net [26] An end-to-end training, few training samples,
and preservation of the full context of the
input images.

BCDU-Net [27] Skip  connections  with  Bi-directional
ConvLSTM  and  densely  connected
convolutions in the encoder part provide
better feature reuse.

CU-Net [28] Configurations of additional skip connections

ORED-Net [30]

among two U-Nets help to transmit high
resolution information from shallow to deeper
layers and loss weighted sampling scheme for
class imbalance problem.

The outer residual skip paths minimize the
information loss and training time.

MultiResUNet [31]  Inception-like blocks [39] iteratively reuse
spatial features across various scales and
multi-resolution analysis.

PMED-Net Less number of parameters, and adaptive

(proposed) techniques of network size achieve the

optimal trade-off between performance and

The decoder part is not effective as it does not
utilizes the information from all pooling or
subsampling layers.

Requires memory to store the indices of max-
pooling operation. Decoder generates sparse
feature maps of higher resolutions which may
not be efficient for sparse datasets.

Slow training in the middle layers of deeper
models.

Rigorous training for the Bi-directional
ConvLSTM, input data is processed in both
forward and backward paths.

Addition of auxiliary supervision, branch
supervision, and using two U-Nets make the
overall architecture very large and slow.

The model requires to be trained rigorously.

Limited generality and reduced performance
for the datasets with less instances.

Reuse of input and pre-processing of data at
different scales.

computations.

feature map size. In decoder, it uses the up-sampling with a
stride = 2, to recover the resolution [26].

A variety of modifications to the basic structure of U-Net
have been proposed with the goal of improving its per-
formance. By introducing a cascaded deep framework for
brain tumor segmentation, CU-Net [28] could outperform
the original U-Net architecture. However, with the addi-
tion of auxiliary supervision, branch supervision, and using
two cascaded U-Net the overall architecture of CU-Net
becomes very large and slow. A deep neural network called
Bi-directional ConvLSTM U-Net with Densely connected
convolutions (BCDU-Net) was proposed by [27] to utilize
the Bi-directional ConvLSTM (BConvLSTM) and dense con-
volutions [43] with U-Net. BConvLSTM (replaced the skip
connections of U-Net) and densely connected convolutions,
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in the encoding path were implemented for better feature
reuse.

The ORED-Net architecture was proposed in [30], to seg-
ment eye regions in multiple classes. The network is based
on SegNet [25], with non-identity residual connections from
encoder to decoder side to reduce information loss. Ibtehaz
and Rahman [30] designed an enhanced version of U-Net
named MultiResUNet. Each pair of convolutional layers of
U-Net were replaced with Inception-like blocks [39]. The
authors claim that this strategy iteratively reuse spatial fea-
tures across various scales. For multi-resolution analysis,
3 x 3,5 x 5,and 7 x 7 kernels are used in parallel but this
results in increasing memory requirements. To address this,
they factorized the larger convolution filters into a series of
3 x 3 convolutions.
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FIGURE 2. The proposed Pyramid Based Multi-Scale Encoder-Decoder Network (PMED-Net). Each encoder-decoder network or number of pyramid level
Ni. k={1,2,3, 4,5, 6} computes a coarse segmentation map which is further refined by the next level network and so on. PMED-Net is adaptively
extended up to six pyramid levels to extract the input image features at different scales.

Keeping in mind the loopholes and an excessive number of
parameters in all these networks, we developed PMED-Net
for medical image segmentation. The pyramid architecture
enables the network to extract features at different scales,
and cascaded models are employed for a coarse-to-fine
prediction. Furthermore, we achieved superior performance
compared to the other state-of-the-art models in terms of
intersection over union (IoU), F1 scores, and sensitivity met-
rics on four publicly available medical image segmentation
datasets.

The rest of the paper is organized as follows: Section III
discusses the proposed framework, and evaluation metrics
are enlisted in Section IV. The dataset details and ablation
studies are included in Section V and VI, respectively. Finally,
Section VII showcases the evaluation results, followed by
concluding remarks in Section VIII.

Ill. PROPOSED ARCHITECTURE

The PMED-Net architecture shown in Figure 2, consists of
six small encoder-decoder networks, where each network
generates coarse predictions that are further refined at the
next level. Predictions made by k™ level encoder-decoder
network (Ng), are up-sampled with stride 2, concatenated
with input image, and used as an input for N1 network. The
proposed cascaded methodology enables the network to reuse
the information iteratively and extract the features at different
resolutions.

A. PYRAMID LEVELS

The proposed PMED-Net architecture, has six pyramid lev-
els, which enables the model to extract the input image details
at different scales. If the input image size is H x W then
the corresponding input and ground truth sizes for the six
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pyramid levels, (level-1, level-2, level-3, level-4, level-5, and
level-6) will be 2K~ 1*H x 2k=1*W, where k = (1, 2, 3, 4,
5, 6) for each corresponding level. We used bilinear interpo-
lation for up-sampling, to match the dimensions. The intu-
itive strategy of these pyramid levels increases the network’s
ability to extract the details of smaller regions of interest at
different scales from the images.

B. NETWORK STRUCTURE

At each pyramid level k, a small encoder-decoder network is
trained independently to reduce the loss function. The pre-
dictions of this network are then up-sampled using bi-linear
interpolation to match the dimensions of the next level pyra-
mid because the next network input size is double compared
to the preceding one. The up-sampled predictions are con-
catenated with the input image and further used by the next
level network. The exceptional case is for the level-1 network,
where the coarse estimation is not available, and the network
uses only the images as the input. The reuse of input images
at different scales improves the flow of information and finer
details while generating the latent feature representations.

C. ENCODER-DECODER NETWORK

At each level k& within the proposed scheme, a three-stage
encoder-decoder network is trained independently to esti-
mate the segmentation map. The detailed architecture of a
single light-weighted encoder-decoder network is shown in
Figure 3. The number of feature maps in the three encoder
stages are increased as 16, 32, and 64. At each stage, we used
two consecutive 3 x 3 convolutions with Rectified Linear
Unit (ReLLU) activation function [44] which is followed by
max-pooling with stride = 2 and window size = 2 x 2 to
decrease the spatial dimension. Starting from 16, after each
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3x3 Convolution . 2x2 Max- Pooling

. 2x2 Up-Sampling . 2x2 Convolution Concatenation . 1x1 Convolution

FIGURE 3. The architecture of a single encoder-decoder network.

stage the number of feature maps is doubled and the maxi-
mum number of feature maps was limited to 64 in the encoder
part to minimize the number of trainable parameters for each
encoder-decoder network.

After third stage, the feature maps are up-sampled with
stride 2 and directly fed to the decoder part. Before con-
catenating with the corresponding encoder feature maps,
a2 x 2 convolution halves the number of feature maps. Then
two, 3 x 3 convolutions with ReLU activation function [43]
are applied in decoder part.

This sequence of 2 x 2 up-sampling, 2 x 2 convolu-
tion, concatenation, and two, 3 x 3 convolutions are stacked
together to match the dimensions with the respective encoder
end (at each stage). The final segmentation map is generated
by using a 1 x 1 convolution operation. The last convolution
layer uses sigmoid activation function.

The proposed encoder-decoder is lightweight and rel-
atively shallower network (compared to a conventional
encoder-decoder) in terms of the feature maps and com-
putational depth. Thus, employing it alone would produce
coarser segmentation results. To overcome such problem,
we stacked it in cascaded (as shown in Figure 2). The pre-
dictions (obtained from the proceeding model instance) are
refined by concatenating the finer-scale feature representa-
tions resulting in superior performance compared to the exist-
ing framework while drastically reducing the computational
requirements.

Overall, the PMED-Net architecture is quite small and
has far less parameterized complexity as compared to other
segmentation networks, shown in Figure 4. Each instance of
the proposed network has only three stages with a much fewer
number of feature maps, therefore the level-1 model (i.e.Np)
has 244,209 parameters, and the remaining each one Nj
(k=2,3,4,5, 6) has 244,353 parameters. This slight increase
in parameters happens because the networks at these levels
also use the previous coarse predictions to refine it further in
addition to the input images. In total, the proposed architec-
ture comprises 1,465,974 parameters for its six pyramid level
training.

D. NETWORK TRAINING
We trained each of the encoder-decoder networks (N;) inde-
pendently and compute the coarse prediction py, for the given
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SegNet [25]
U-Net [26]
BCDU-Net [27] ] 20,660,869
CU-Net [28] | 17,098,722
FCN-8s[29] [ 1] 16,498,501
ORED-Net [30] [ 9.735.365
MultiResUNet [31] [0 7-262,750
PMED-Net (our) [77]1,465,974
Ny [ 244,353

|31,244,865

| 31,044,357

FIGURE 4. Different Models size in terms of parameters.

input Iy @ Py,
Pk = N (Ix ® Pyr) , (D

where Py is the up-sampled prediction, /; is the input image
and the symbol@® represents the concatenation. Ny represents
the encoder-decoder network for k = (1, 2, 3, 4, 5, 6). Each
N aims to reduce the dice-loss at different scales of the input.
The network N (shown in Figure 2) was trained with 48 x
48 images and for each subsequent pyramid level we doubled
the resolution. This process was iterated until the level-6.

We trained each network using the prediction of the previ-
ous network as an initialization. All the networks were trained
using Adam optimization [45] with 8= 0.9 and B,= 0.99.
The learning rate was set to le-4 with a batch size of 2. The
loss function is defined in term of the dice coefficient [46] as
follow,

@

2 x (Target N Prediction)
Loss=1—

(Target + Prediction)

IV. EVALUATION METRICS

We used different evaluation metrics to evaluate and compare
the performance of the PMED-Net architecture. First of all,
we computed the confusion matrix between prediction and
ground truth by calculating the number of true positives (TP),
true negatives (TN), false positives (FP), and false-negatives
(FN). These variables are used to measure the performance
of the network in terms of intersection over union (IoU),
F1-Score, and recall/sensitivity. IoU is the ratio of the area
of overlap to the area of union between prediction and the
ground truth. In terms of the variables of the confusion matrix,
it is defined as,

TP
IoU=— ). A3)
TP+ FN + FP

Precision defines the ability of the model to locate relevant
objects only, and recall evaluates true positive detections
relative to all ground truths. In terms of the confusion matrix’s
variables, precision and recall are defined as;

. TP
Precision = | —— |, “4)
TP + FP
and
TP
Recall = | — ) . (5
TP + FN
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F1-Score is the harmonic-mean between precision and
recall and is expressed as,

(6)

(2 x Precision x Recall)
F1_Score =

(Precision + Recall)

V. DATASETS

We used four different publicly available medical image
segmentation datasets for our experiments conducted in the
proposed study. For each dataset, a pixel-wise prediction was
performed. The details for each dataset and the distribution of
data for training, validation, and testing are described in this
section.

A. ISIC 2018 (SKIN LESION ANALYSIS TOWARDS
MELANOMA DETECTION) DATASET

This dataset was released by International Skin Imag-
ing Collaboration (ISIC) in 2018 [47], [48]. It con-
tains 2594 dermoscopy images that are available at:
https://challenge2018.isic-archive.com/. The dataset consist
of different challenging tasks like boundary segmentation,
attribute detection, and disease classification. For all the
experiments conducted in this paper, we used 1816 images
for training, 258 for validation, and 520 for testing taken from
task-1 of boundary segmentation.

B. BRAIN TUMOR DATASET

This dataset was obtained from The Cancer Imaging Archive
(TCIA) which contained 110 cases of lower-grade glioma
patients. The data has MR images along with FLAIR abnor-
mality segmented masks. For the proposed experiments,
we deleted the images without label pixels, and after data fil-
tering, we left with 880 images along with their ground truths.
These images were split into training (600), validation (100),
and holdout test images (180). The dataset is available at the
following link: https://www.kaggle.com/mateuszbuda/lgg-
mri-segmentation/version/I.

C. X-RAY DATASET

The X-ray dataset used in this paper is composed of four dif-
ferent datasets, namely the Montgomery County chest X-ray
set, Japanese Society of Radiological Technology (JSRT)
dataset [49], the Shenzhen chest X-ray set [S0]-[52], and the
National Institutes of Health (NIH) Chest X-ray Dataset [53].

The Montgomery County X-ray dataset was obtained
from the Department of Health and Human Services of
Montgomery County, MD, USA. It contains 138 posterior-
anterior X-rays from their tuberculosis control pro-
gram. The set has 80 normal and 58 abnormal scans
together with their corresponding ground truth masks
available at: http://openi.nlm.nih.gov/imgs/collections/NLM-
MontgomeryCXRSet.zip.

The JSRT dataset was created by JSRT and the Japanese
Radiological Society (JRS) for different tasks such as
computer-aided diagnosis, image compression, and picture
archiving. It consists of 247 images having 154 with and
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93 without lung nodule. A pixel-wise lung annotation masks
of 246 images are also provided for segmentation tasks at the
following link: http://db.jsrt.orjp/eng.php.

The Shenzhen dataset contains 662 X-ray images, among
which 326 are normal and 336 X-rays have symptoms of
Tuberculosis. Pixel-wise annotation masks of 566 instances
are available at: https://www.kaggle.com/yoctoman/shcxr-
lung-mask .

Overall, by combining the above three datasets, we had
total of 950 images, divided into training (850) and val-
idation set (100). For testing purposes, we used a dif-
ferent dataset named NIH dataset. One hundred samples
have been taken from the NIH Chest X-ray dataset and
annotated manually by [54] having various lung diseases.
These images are available at: https://nihcc.app.box.com/s/
r8kfSxcthjvwfor7llan99e1nj4080m. This NIH dataset
includes several severities of lung diseases that can evaluate
the network performance and generalization capability more
effectively.

D. NUCLEI DATASET

This dataset contains 670 segmented nuclei images and is pro-
vided by Data Science Bowl 2018 Segmentation Challenge
available at: https://www.kaggle.com/gangadhar/nuclei-
segmentation-in-microscope-cell-images. The images were
captured under different conditions, magnification, and
modalities (brightfield vs. fluorescence) and provided with
a mask for each nucleus. As a pre-processing step, all the
nuclei of single input image were combined together in one
ground truth. Images were randomly assigned into a training
set (510), validation set (60), and a testing set (100).

VI. ABLATION STUDIES

The effectiveness of the proposed PMED-Net architecture
was also evaluated by comparing it with different ablated
variants of it. We investigated two versions of PMED-Net
in our ablation study: (1) Rather than using pyramids of
different scales, we used the same size images in all six levels
of the network (2) We increased or decreased the number
of pyramid levels or encoder-decoder networks in architec-
ture. This strategy is used for each dataset to experimentally
determine the optimal tradeoff between performance and the
computations.

For the case (1), we used NIH X-ray segmentation dataset
in the ablation study for which the optimal performance is
obtained at the fourth level of PMED-Net. By using images
of the same sizes in all four levels, the network is unable
to extract features at different scales. So, the performance
of PMED-Net is lower as compared to using the pyramid of
different scales in all four levels. The quantitative results of
this experiment are listed in Table 2. In the implementation
of the ‘without pyramid’, method all images are of the same
size (384 x 384).

In the proposed method, we employed six pyramid levels
to develop PMED-Net. The six levels are determined empiri-
cally. Although for some datasets the optimal performance is
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TABLE 2. Performance comparison using different scales of images and
same size images in four levels of the proposed architecture for NIH X-ray
dataset segmentation.

Method F1-Score IoU Sensitivity
With Pyramids 0.8414 0.9139 0.9057
Without Pyramids 0.7326 0.8456 0.7501
0.9
0.8 -
.4 977,268 1,221,621 1,465974
732,915
0.7
':5 The number indicates model
= 06 488,562 parameters at different levels
—+—X-ray Dataset
93 Nuclei Dataset
Brain Tumor Dataset
o 244,209 ISIC Dataset

1 2 3 4 5 [

No. of pyramid levels (Nj)

FIGURE 5. loU plotted as a function of number of pyramid level or
number of encoder-decoder networks Ny, set in cascade for each dataset.

obtained at the fourth or fifth level (as shown in Figure 5) and
for other datasets performance improves up to the sixth level.
We also extended the pyramid levels beyond six levels (i.e.
up to seven and eight levels), but the performance gain was
statistically insignificant. Accordingly, in this study, we set
the maximum level to six and the minimum levels are depen-
dent on the dataset itself.

We analyzed the performance of PMED-Net by chang-
ing the number of encoder-decoder networks in the archi-
tecture. A different number of encoder-decoder networks
were cascaded, ranging from one to six for all four
datasets. As the number of levels increased, improve-
ment in the performance could be observed as shown
in Figure 5.

The optimal number of levels depends upon the com-
plexity of the dataset, and the boost in performance for the
six pyramid levels is different for each dataset. For all four
datasets, there was a significant improvement in IoU from
level-1 to level-4, and by further increasing the number of
levels, increment in IoU is quite slow. Thus, by considering
the complexity of the dataset and a tradeoff between per-
formance and computations we can adaptively change the
network size. However, using more number of levels required
longer training and testing time.

The PMED-Net architecture performs a coarse-to-fine pre-
diction in a cascaded manner, as shown in Figure 6. Atlevel-1,
the network can identify the area of interest to be segmented.
However, still it cannot distinguish between different nuclei,
a higher level networks further refine these coarse predictions
and segment each nucleus more clearly. For the sake of
visualization, we scaled all predictions in Figure 6 to the same
size.
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FIGURE 6. Predictions of the proposed architecture (from left to right in a
coarse-to-fine way).

VII. RESULTS AND DISCUSSIONS

As introduced in Section V, we used four publically avail-
able medical image datasets, to evaluate and compare the
performance of the proposed PMED-Net. All the experiments
of the proposed study were conducted using a PC equipped
with an NVIDIA Titan XP GPU and a Keras framework with
Tensorflow backend.

A. ISIC SEGMENTATION

The quantitative analysis for the ISIC dataset between
PMED-Net and the other comparing networks are listed
in Table 3. For each evaluation index, the proposed
PMED-Net outperforms other networks. While the most reli-
able results, in comparison with our network, were produced
by CU-Net. However, they are 3%, 1.82%, and 1.2% less
accurate than the proposed network in terms of the IoU,
F1-Score, and sensitivity metric, respectively. The results of
FCN-8s were the lowest, and this results from under segmen-
tation of the area of interest.

TABLE 3. Segmentation results measured by loU, F1-Score, and
sensitivity metric for the ISIC dataset.

Network IoU F1-Score Sensitivity
U-Net [26] 0.8154 0.8983 0.8693
SegNet [25] 0.8087 0.8942 0.8442
FCN-8s [29] 0.6929 0.8186 0.7107

BCDU-Net [27] 0.8128 0.8967 0.8577
CU-Net [28] 0.8207 0.9015 0.8904
ORED-Net [30] 0.8181 0.8999 0.8527
MultiResUNet [31] 0.7593 0.8631 0.7775
PMED-Net (proposed) 0.8510 0.9197 0.9028

For visualization purposes, the qualitative results are
shown in Figure 7. The first column is the input, the sec-
ond one is ground truth, and the proceeding columns are
the segmentation maps generated by U-Net, FCN-8s, Seg-
Net, BCDU-Net, CU-Net, ORED-Net, MultiResUNet and
PMED-Net, respectively.

B. NUCLEI SEGMENTATION

The quantitative results for the nuclei segmentation task are
listed in Table 4. The performance of the proposed architec-
ture was comparatively better than that of SegNet, FCN-8s,
CU-Net, ORED-Net, MultiResUNet and U-Net in terms of
the IoU and Fl-score. PMED-Net performs on par with
BCDU-Net.
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FIGURE 8. Experimental results of different networks for the Nuclei dataset.

TABLE 4. Evolution of PMED-Net architecture compared with other
networks for nuclei segmentation.

Network IoU F1-Score Sensitivity
U-Net [26] 0.7859 0.8801 0.9307
SegNet [25] 0.7509 0.8577 0.8922
FCN-8s [29] 0.7727 0.8718 0.8452

BCDU-Net [27] 0.7952 0.8859 0.9374
CU-Net [28] 0.7281 0.8427 0.9089
ORED-Net [30] 0.7896 0.8824 0.9308
MultiResUNet [31] 0.7397 0.8503 0.7811
PMED-Net (proposed) 0.7931 0.8846 0.9242

BCDU-Net performs marginally (0.21%, 0.13%, and 1.3%
in terms of IoU, F1-Score, and sensitivity, respectively) bet-
ter than PMED-Net utilizing 14 times more parameters.
The PMED-Net architecture was extended to six pyramid
levels for this dataset, and the performance improvement
contributed by each level is shown in Figure 5. As can be seen,
each extra stage in the pyramid level network further refined
the previous predictions. The PMED-Net compromised only
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around 1.3 million parameters as compared to 20.66 million
parameters of BCDU-Net.

The visual results of PMED-Net and the other comparing
models are shown in Figure 8. PMED-Net gave satisfactory
performance in segmenting the small nuclei and clearly dis-
tinguishing the boundaries of each nucleus when compared
to U-Net, FCN-8s, SegNet, ORED-Net, MultiResUNet and
CU-Net which were unable to distinctively differentiate the
region of interest.

C. BRAIN TUMOR SEGMENTATION

Table 5 illustrates the quantitative performance of the pro-
posed architecture for the brain tumor dataset as compared
to the other networks. For this dataset, PMED-Net was
extended to four pyramid levels, and after fourth level there
was insignificant improvement in the performance, as shown
in Figure 5. PMED-Net outperforms SegNet, FCN-8s,
CU-Net, ORED-Net, and MultiResUNet in terms of IoU and
F1-score whereas slightly underperforms compared to U-Net,
BCDU-Net, CU-Net and ORED-Net in terms of sensitivity.
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FIGURE 10. Visual results for NIH X-ray dataset segmentation.

TABLE 5. Comparison of evaluation metrics for brain tumor dataset
segmentation.

Network IoU F1-Score Sensitivity
U-Net [26] 0.8564 0.9226 0.9398
SegNet [25] 0.8114 0.8959 0.9125
FCN-8s [29] 0.81032 0.8952 0.9036

BCDU-Net [27] 0.8562 0.9225 0.9497
CU-Net [28] 0.8039 0.8913 0.9420
ORED-Net [30] 0.7786 0.8755 0.9372
MultiResUNet [31] 0.7141 0.8332 0.8280
PMED-Net (proposed) 0.8339 0.9093 0.9253

The visual results for the brain tumor dataset are shown
in Figure 9. The PMED-Net architecture for this dataset had
fewer than one million parameters (977,268) and was capable
of producing on par or better results as compared to the other
comparative methods.
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D. X-RAY SEGMENTATION

The quantitative and qualitative analysis, for X-ray segmen-
tation task, was performed on the NIH database. Table 6
summarizes the segmentation performance of PMED-Net
architecture against each evaluation metric and all other
networks. For each evaluation index, the proposed network
performance is significantly better than all other networks in
terms of the IoU, F1-Score, and sensitivity metric.

The qualitative results of the X-ray segmentation are shown
in Figure 10. PMED-Net performance is good in terms of
segmenting small regions and boundaries, which is evident
from row 2 of Figure 10. Such optimal performance is
obtained with four level PMED-Net architecture where the
six level PMED-Net enhance the performance by only 0.83%,
but cost 1.5 times more parameters.

Moreover, in this study, we also included few bad segmen-
tation examples of the PMED-Net, shown in Figure 11, where
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TABLE 6. Experimental results of PMED-Net for X-ray segmentation and
comparison against other networks.

Network IoU F1-Score Sensitivity
U-Net [26] 0.7993 0.8884 0.83052
SegNet [25] 0.7942 0.8853 0.8149
FCN-8s [29] 0.8159 0.8986 0.8374

BCDU-Net [27] 0.8062 0.8927 0.8419
CU-Net [28] 0.7848 0.8794 0.8081
ORED-Net [30] 0.7772 0.8746 0.8093
MultiResUNet [31] 0.8065 0.8929 0.8258
PMED-Net (proposed) 0.8414 0.9139 0.9057

Input Ground Truth Prediction Input Ground Truth Prediction

FIGURE 11. Examples of bad segmentation by PMED-Net.

the proposed network performance is reduced as it either
over-segments or under-segments the region of interest.

VIil. CONCLUSION

In summary, we have presented a pyramid based multi-scale
encoder-decoder, PMED-Net, for medical image segmen-
tation. The proposed PMED-Net has quite less number of
parameters and training as well as inference time, making it
more efficient and applicable for embedded applications in
healthcare. The PMED-Net architecture uses a coarse-to-fine
prediction approach at each pyramid level to extract features
with different scales using small encoder-decoder networks.
We have extended the architecture up to six pyramid levels
(where the optimal number of levels determined empirically).
At each level, a light-weighted encoder-decoder network
is trained independently, and then its predictions are up-
sampled, concatenated with the next pyramid level images,
and used as input for the next level encoder-decoder network.
We have evaluated and compared PMED-Net on four dif-
ferent publicly available medical image datasets. The results
show that the proposed PMED-Net significantly improves the
computer aided diagnosis of medical images compared to the
other state-of-the-art networks with much lower parameter-
ized complexity.
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